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There is no unique way to encode a
quantum algorithm into a quantum circuit.
With limited qubit counts, connectivities,
and coherence times, circuit optimization
is essential to make the best use of near-
term quantum devices. We introduce two
separate ideas for circuit optimization and
combine them in a multi-tiered quantum
circuit optimization protocol called AQ-
CEL. The first ingredient is a technique
to recognize repeated patterns of quan-
tum gates, opening up the possibility of
future hardware co-optimization. The sec-
ond ingredient is an approach to reduce
circuit complexity by identifying zero- or
low-amplitude computational basis states
and redundant gates. As a demonstra-
tion, AQCEL is deployed on an iterative
and efficient quantum algorithm designed
to model final state radiation in high en-
ergy physics. For this algorithm, our opti-
mization scheme brings a significant reduc-
tion in the gate count without losing any
accuracy compared to the original circuit.
Additionally, we have investigated whether
this can be demonstrated on a quantum
computer using polynomial resources. Our
technique is generic and can be useful for
a wide variety of quantum algorithms.

1 Introduction

Recent technology advances have resulted in a va-
riety of universal quantum computers that are
being used to implement quantum algorithms.

Koji Terashi: koji.terashi@cern.ch

However, these noisy-intermediate-scale quantum
(NISQ) devices [1] may not have sufficient qubit
counts or qubit connectivity and may not have
the capability to stay coherent for entirety of the
operations in a particular algorithm implementa-
tion. Despite these challenges, a variety of appli-
cations have emerged across science and industry.
For example, there are many promising studies in
experimental and theoretical high energy physics
(HEP) for exploiting quantum computers. These
studies include event classification [2–6], recon-
structions of charged particle trajectories [7–10]
and physics objects [11, 12], unfolding measured
distributions [13] as well as simulation of multi-
particle emission processes [14, 15]. A common
feature of all of these algorithms is that only sim-
plified versions can be run on existing hardware
due to the limitations mentioned above.

There are generically two strategies for improv-
ing the performance of NISQ computers to ex-
ecute existing quantum algorithms. One strat-
egy is to mitigate errors through active or pas-
sive modifications to the quantum state prepara-
tion and measurement protocols. For example,
readout errors can be mitigated through post-
processing steps [16–35] and gate errors can be
mitigated by systematically enlarging errors be-
fore extrapolating to zero error [36–41]. A com-
plementary strategy to error mitigation is circuit
optimization, also known as circuit compilation.
In particular, there is no unique way to encode a
quantum algorithm into a set of gates, and cer-
tain realizations of an algorithm may be better-
suited for a given quantum device. One widely
used tool is t|ket〉 [42], which contains a variety
of architecture-agnostic and architecture-specific
routines. For example, Clifford identities such
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as CNOT2 = Identity are automatically recog-
nized. There are also a variety of other toolk-
its for circuit optimization, including hardware-
specific packages for quantum circuits [43–61].
Since t|ket〉 is a generic framework that contains
many algorithms that have already been bench-
marked against other procedures, it will serve as
our baseline.

We introduce two techniques that can be used
to optimize circuits and that are complementary
to existing methods. The first focuses on the
identification of recurring sets of quantum gates
in a circuit. Identifying such recurring sets of
gates (RSG) can be very important, since any op-
timization of these RSGs has an enhanced effect
on the overall circuit. Furthermore, identifying
recurring gate sets can be useful for future hard-
ware optimizations where the fidelity of certain
common operations can be enhanced at the ex-
pense of other, less frequent operations. Depend-
ing on the operation(s), this optimization could
be at the level of microwave pulse controls or it
may require custom hardware architectures. The
second technique optimizes a generic circuit by
eliminating unnecessary gates or unused qubits
such that the circuit depth becomes as short as
possible. One example where such an optimiza-
tion can lead to simplifications is a case where
a quantum circuit has been designed with com-
plete generality in mind. In this case, for a certain
initial state the circuit only reaches a select set
of intermediate states such that some operations
become trivial and can be eliminated. The elimi-
nation of unnecessary gate operations introduced
here focuses on controlled operations such as a
Toffoli or a CNOT gate in a quantum circuit. The
heart of the elimination technique resides in the
identification of zero- or low-amplitude computa-
tional basis states, that allows us to determine
whether the entire gate or (part of) qubit con-
trols can be removed. Both of these techniques
are combined in an optimization protocol called
Aqcel (and pronounced “excel”) for Advancing
Quantum Circuit by icEpp and Lbnl.

To demonstrate the effectiveness of these tech-
niques, we will use a quantum algorithm from
HEP to perform a calculation in quantum field
theory. The particular algorithm that we study
models a parton shower, which is the collinear fi-
nal state radiation from energetic charged (under
any force) particles [15]. This algorithm is a use-
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Figure 1: Flowchart of the proposed optimization pro-
tocol. The first part is the RSG pattern recognition,
in which the circuit is converted into a directed acyclic
graph (DAG) to identify recurring quantum gates. In
the second part, we eliminate unnecessary gates and un-
used qubits through a heuristic approach. Finally, the
resulting circuit can be encoded into particular gates for
specific hardware.

ful benchmark because it provides an exponential
speedup over the most efficient known classical
algorithm and the circuit depth can be tuned for
precision. While we show results for this specific
circuit, the proposed protocol has a wide range of
applicability for quantum computing applications
across science and industry.

This paper is organized as follows. Section 2
provides an overview of the Aqcel protocol. The
application of this protocol to the HEP example
is presented in Sec. 3. Following a brief discussion
in Sec. 4, the paper concludes in Sec. 5.

2 Aqcel optimization protocol

As already mentioned, the Aqcel protocol com-
prises two components: identifying recurring
quantum gates (Sec. 2.1) and eliminating un-
necessary gates and unused qubits (Sec. 2.2).
This approach focuses on circuit optimization at
the algorithmic level instead of at the level of
a specific implementation using the native gates
for a particular quantum device. A high-level
flowchart for our protocol is presented in Fig. 1.
The individual optimization steps are described
below.

2.1 Gate set pattern recognition

First, the Aqcel attempts to identify gate set
patterns in an arbitrary quantum circuit and ex-
tract RSGs from the circuit.
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Figure 2: An example circuit containing a Toffoli gate
(top) and its corresponding DAG (bottom).

2.1.1 Representation in directed acyclic graph

In a quantum circuit, individual qubits are ma-
nipulated by gate operations one by one, meaning
that the quantum state represented at a certain
point of the circuit should not be affected by gate
operations applied afterward (at a later point in
the circuit). Such a structure can be described by
a directed acyclic graph (DAG). A DAG allows us
to easily check dependencies between qubits and
to extract a subset of the circuit that functions
for certain tasks.

First, we convert a quantum circuit to the form
of a DAG using the DAGCircuit class in Qiskit
Terra API, where a node represents an operation
by a quantum gate and an edge that connects the
nodes represents a qubit. In the case of a Toffoli
gate, the node corresponding to the Toffoli gate
has three incoming edges (qubits before the gate
operation) and three outgoing edges (qubits after
the gate operation). Figure 2 shows an exam-
ple circuit containing a Toffoli gate and its corre-
sponding DAG.

A gate set pattern recognition for a quan-
tum circuit can be resolved through the DAG

representation. The identity of the RSG func-
tionality can be ensured by checking the iden-
tity of DAGs of two circuits, as a graph isomor-
phism problem. The algorithm of gate set pat-
tern recognition consists of two steps: (1) finding
RSG candidates with DAG representation, which
enables to access recurring gates efficiently and
identify a dependency of two gates, using depth-
first search with heuristic pruning, and (2) check-
ing the DAG isomorphism by graph hashing with
Weisfeiler Lehman graph hash [62] implemented
in the NetworkX library [63]. The details of the
gate set pattern recognition including computa-
tional complexity are given in Appendix A, with
the pseudocode of the algorithm.

2.1.2 Tiered extraction of recurring gate sets

The appearance pattern of RSGs in a quantum
circuit may depend on specific encoding of the
quantum algorithm. To account for different pat-
terns, we consider three different levels of match-
ing criteria to define the recurrence of quantum
gates:

Level 1 : Only matching in gate types,

Level 2 : Matching in gate types and the roles
of qubits that the gates act on,

Level 3 : Matching in gate types and both roles
and indices of qubits that the gates act on.

The matching criterion in Level 1 is the least
stringent: it just identifies the same sets of quan-
tum gates appearing in the circuit, irrespective
of which qubits they act on. The Level 2 is
more strict and ensures that the qubits the RSGs
act on have the same roles. In other words,
the qubit connections between the gates inside
a single RSG are maintained but the qubit in-
dices might vary between the RSGs. The Level
3 applies the most stringent condition, where the
qubits that the RSGs act on must have the same
roles and qubit indices. In other words, the RSGs
must appear on an identical set of qubits in the
circuit. The appearance patterns of the RSGs are
illustrated in Fig. 3 for the three matching crite-
ria.

The identified RSGs are ranked in terms of the
product of the number of gates constituting the
set and the number of occurrence of the set in the
circuit. A fixed number of top-ranked RSGs are
extracted from the circuit in this step.
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Figure 3: Possible RSG patterns for a given target RSG
corresponding to the three levels of matching criteria.

2.2 Heuristic circuit optimization
After attempting to identify RSGs in the circuit,
a heuristic optimization procedure takes place to
make the circuit depth as short as possible by
eliminating redundant gates or unused qubits. In
this step, we consider two levels of optimization:

Level 1 : Optimize the entire circuit including
RSGs,

Level 2 : Optimize the entire circuit, but for the
RSGs only adjacent gate pairs (see below)
are removed.

The Level 1 optimization would provide a shorter,
more efficient circuit. Compared to Level 1, Level
2 optimization likely results in a deeper circuit for
most cases, while it provides more room for im-
provement in later compilation stages if the RSGs
have specialized low-level implementations.

2.2.1 Basic idea of redundant controlled opera-
tions removal

A controlled operation with such as a CNOT or
a Toffoli gate performs a different operation de-
pending on the quantum state of the system at
the point where the gate is applied. Let m be the
number of control qubits of this operation. Con-
sider expanding the state of the full system |ψ〉
into a superposition of computational basis states
as

|ψ〉 =
∑
j,k

cj,k |j〉ctl ⊗ |k〉 , (1)

where |·〉ctl denotes the state of the control qubits,
while the unsubscripted ket corresponds to the
rest of the system. We write the states as integers
wtih 0 < j < 2m − 1 and 0 < k < 2n−m − 1.
We assume that the controlled operation for the

gate is applied when all control qubits are in the
|1〉 state, which corresponds to the state |j〉ctl =
|11 . . . 1〉 = |2m − 1〉ctl. This allows to classify
the state of the system into three general classes
using the amplitudes cj,k:

Triggering : cj,k 6= 0 iff j = 2m − 1. The con-
trolled operation of the gate in question is
applied for all computational bases in the su-
perposition.

Non-triggering : c2m−1,k = 0 for all k. The
controlled operation is never applied.

Undetermined : The state is neither triggering
nor non-triggering.

A circuit containing triggering or non-
triggering controlled gates can be simplified by
removing all controls (triggering case) or by elim-
inating the gates entirely (non-triggering case).
While an undetermined single-qubit controlled
gate cannot be simplified under the current
scheme, an undetermined multi-qubit controlled
gate can be by removing the controls on some of
the qubits, if the state of the system satisfies the
condition described in Appendix C.

As an example of this concept, consider the fol-
lowing simple circuit:

|0〉 H •

|0〉 • X • •

|0〉

If the second qubit is in the initial state |0〉, the
first CNOT gate has no effect and can be removed
from the circuit as the |0〉 is the non-triggering
state of CNOT. The second qubit before the sec-
ond CNOT gate is in the state |1〉, which is the
triggering state. Therefore, the qubit control can
be removed from the second CNOT gate. The
first two qubits before the Toffoli gate are in the
superposition of |01〉 and |11〉, which is an un-
determined state for the Toffoli gate. Since the
Toffoli gate has a triggering bitstring {11}, and
the second qubit is always in the |1〉 state, this
second qubit control can be removed from the
Toffoli gate, replacing it with a CNOT gate con-
trolled only on the first qubit.

The heuristic circuit optimization therefore re-
quires, for each controlled gate, the identification
of possible states the control qubits can take, and

4



the removal of unnecessary parts of the controlled
operations. These two steps are discussed in de-
tail in the following.

It is well known that an arbitrary multi-qubit
controlled-U gate with m control qubits can be
decomposed into O(m) Toffoli and controlled-
U gates [64]. Therefore, in the remainder of
this paper, we assume that all controlled gates
are reduced to Toffoli gates denoted as C2[X],
and singly-controlled unitary operation denoted
as C[U ]. This implies that the only triggering
bitstrings we need to consider are either {1} or
{11}. For a n-qubit circuit composed of N multi-
qubit controlled-U gates, each having at most n
control qubits, this decomposition results in at
most

Ñ = nN (2)

controlled gates.

2.2.2 Identification of computational basis states

In general, a circuit consisting of n qubits creates
a quantum state described by a superposition of
all of the 2n computational basis states. How-
ever, it is rather common that a specific circuit
produces a quantum state where only a subset of
the computational basis states has nonzero ampli-
tudes. Moreover, the number of finite-amplitude
basis states depends on the initial state. This is
why the three classes of the states of the system
arise.

The state classification at each controlled gate
can be determined either through a classical sim-
ulation or by measuring the control qubits repeat-
edly. In the case of a classical simulation, one can
either perform the full calculation of the ampli-
tudes, or simply track all the computational basis
states whose amplitudes may be nonzero at each
point of the circuit without the calculation of the
amplitudes. Aqcel adopts the latter method for
the lower computational resource. When instead
the quantum measurements are used, the circuit
is truncated right before the controlled gate in
question, and the control qubits are measured
repeatedly at the truncation point. Finiteness
of the relevant amplitudes can be inferred from
the distribution of the obtained bitstrings, albeit
within the statistical uncertainty of the measure-
ments.

A few notes should be taken on the compu-
tational costs of the two methods. Consider an

n-qubit circuit with N controlled gates. As dis-
cussed before, reducing this to either C2[X] or
C[U ] results in O(Ñ) single or double controlled
gates. A classical simulation of the state vector
before a given controlled gate has an exponen-
tial scaling in the number of qubits and requires
O(2n) computations. On the other hand, measur-
ing the m = 1 or 2 control qubitsM times, which
results in M bitstrings of length m, only requires
O(M) operations. Repeating this for all Ñ gates
requires O(Ñ2n) for the classical simulation and
O(Ñ2M) when using quantum measurements.

More details on the estimates of the computa-
tional resource necessary for the identification of
computational basis states, as well as other opti-
mization steps, are described in Appendix B.

2.2.3 Elimination of redundant controlled opera-
tions

Once the nonzero-amplitude computational basis
states are identified at each controlled gate, we
remove the gate or its controls if possible. When
using classical simulation, the entire circuit is an-
alyzed first before the control elimination step.
When quantum measurments are instead used,
circuit execution, measurements, and circuit op-
timization are performed at each controlled gate
separately.

The control elimination step for each controlled
gate proceeds as follows. For a C[U ] gate, com-
pute the probability of observing |1〉 of the control
qubit. If that probability is 1, eliminate the con-
trol and only keep the single unitary gate U . If
the probability is 0, remove the controlled gate
from the circuit. In all other cases, keep the con-
trolled gate. For a C2[X] (Toffoli) gate, compute
the probabilities of the four possible states |00〉,
|01〉, |10〉, and |11〉. If the probability of |11〉 is
1, remove the two controls and only keep the X
gate. If the probability of |11〉 is 0, remove the
entire Toffoli gate. If neither of those two condi-
tions are true (the undetermined class), it is still
possible to eliminate one of the two controls. This
is true if the probability of the state |01〉 (|10〉)
is zero, in which case one can eliminate the first
(second) control. The following pseudocode is the
full algorithm for redundant controlled operations
removal.

Algorithm 1: Redundant controlled operations
removal

5



for all C[U ] or C2[X] gate g in the circuit do
execute circuit up to, but not including, g
if g is a C[U ] gate then
measure the control qubit q in the Z basis
multiple times
if {1} is observed in the measurement re-
sults then

if {0} is not observed in the measure-
ment results then
turn g into a U gate acting on the
target qubit

end if
else
eliminate g

end if
else
measure the control qubits q1q2 in the Z
basis multiple times
if {11} is observed in the measurement re-
sults then

if {00} and {01} and {10} are not ob-
served in the measurement results then
turn g into an X gate acting on the
target qubit

else if {01} is not observed in the mea-
surement results then
eliminate the control on q1

else if {10} is not observed in the mea-
surement results then
eliminate the control on q2

end if
else
eliminate g

end if
end if

end for

Note that for noisy quantum circuits the mea-
surements of the states will not be exact, and one
expects errors in the probabilities to observe cer-
tain bitstrings. This means that one has to im-
pose thresholds when deciding whether we call
the state triggering, non-triggering or undeter-
mined. Once such a threshold has been decided,
the number of measurements required has to be
large enough for the statistical uncertainty to be
smaller than this threshold. This will be dis-
cussed in more detail in Sec. 3 when we give ex-
plicit examples.

The computational cost of determining
whether to eliminate controls or the entire

controlled operation can easily be determined.
Given the measured bitstrings, which as dis-
cussed in the previous section can be determined
with O(Ñ2M) operations, one can compute the
probabilities for each possible bitstring, and
therefore decide whether to simplify a controlled
operation using O(Ñ) operations. Some more
details about the resource scaling are given in
Appendix B.

Note that superfluous controlled operations
can also be found and eliminated using the so-
called ZX calculus [65, 66]. In fact, the ZX cal-
culus is complete in the formal logic sense of the
word, such that one can always prove that an
unnecessary gate can be removed using the ZX
calculus. However, in general this requires ex-
ponential resources, and therefore has no scaling
advantage with respect to simply computing the
state vectors. Of course, the ZX calculus is still
incredibly powerful and underlies many of the
optimization techniques of quantum transpilers,
such as the t|ket〉 compiler we compare to later.

2.2.4 Elimination of adjacent gate pairs

Note that if a unitary operator A and its Hermi-
tian conjugate A† act on the same set of qubits
adjacently, resulting in an identity operation, the
gates implementing these operators can be re-
moved from the circuit. While this is an obvi-
ous simplification, the removal of gates through
the optimization steps described above can result
in a circuit with such cancelling gate pairs. For
this reason, this step of gate reduction is applied
before and after eliminating redundant controlled
operations.

2.2.5 Elimination of unused qubits

After taking the above steps, the circuit is exam-
ined for qubits where no gate is applied (identi-
cally remain in the initial state), which are then
removed from the circuit. Such a situation occurs
e.g., when a quantum circuit designed to work
universally with different initial states is executed
with a specific initial state. An example of such
a circuit is the sequential algorithm we consider
in the next section.
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3 Application to quantum algorithm
The circuit optimization protocol described in
Sec. 2 has been deployed to a quantum algorithm
designed for HEP [15]. The heuristic optimiza-
tion (Sec. 2.2) is performed at Level 1 for the
optimization on existing quantum hardware. In
our results, we present how many gates are re-
moved in three steps of the heuristic optimization
namely

• Step 1: Eliminate adjacent gate pairs

• Step 2: Eliminate redundant controlled op-
erations

• Step3: Eliminate adjacent gate pairs again

3.1 Quantum parton shower algorithm

Simulating quantum field theories is a flagship
scientific application of quantum computing. It
has been shown that a generic scattering process
can be efficiently simulated on a quantum com-
puter with polynomial resources [67]. However,
such circuits require prohibitive resources in the
context of near-term devices.

A complementary approach is to simulate one
component of the scattering process. In particu-
lar, Ref. [15] proposed an algorithm to simulate
the collinear radiation from particles that carry a
nonzero fundamental charge. Such radiation ap-
proximately factorizes from the rest of the scat-
tering amplitude and can therefore be treated in-
dependently. This factorization is the basis for
parton shower Monte Carlo generators in HEP.
The quantum parton shower (QPS) algorithm
provides an exponential speedup over known al-
gorithms when the charge is not the same for all
particles that can radiate.

The particular example demonstrated in
Ref. [15] starts with n fermions that can be either
type f1 or f2. These fermions can radiate a scalar
particle φ, which itself can split into fermion-anti-
fermion pairs (of the same or different type). The
relevant parameters are the three couplings g1,
g2, and g12 between f1 and φ, f2 and φ, and f1f̄2
(f̄1f2) and φ, respectively. The shower evolution
is discretized into Nevol steps and at each step,
one of the particles could radiate / split or noth-
ing happens. This produces a precise result when
Nevol is large. Figure 4 shows the quantum cir-
cuit block for themth step of the quantum circuit.

First, the fermions are rotated into a new basis
fa and fb where the effective mixing gab between
faf̄b (f̄afb) and φ is zero. Then, the number of
particles of each type are counted and stored in
registers na, nb, and nφ. Next, a Sudakov factor
is calculated to determine if an emission happens
(or not). This operation depends only on the to-
tal number of particles of each type. After the
emission step, the particle and history registers
are modified depending on the emission. Lastly,
the fermions are rotated back into the f1 and f2
basis. Some of the steps in this algorithm are uni-
versal (independent ofm) and some dependent on
m due to the running of coupling constants with
energy scale.

|p〉 / R(m) p p U
(m)
p R(m)†

|h〉 / Uh h

|e〉 U
(m)
e

e

|nφ〉 /

Ucount

nφ

Uh|na〉 / na

|nb〉 / nb

Figure 4: The mth step of the quantum circuit for the
algorithm proposed in Ref. [15]. There are three phys-
ical registers: |p〉 containing the set of particles at this
step; |h〉 for the branching history; and |e〉 which is a
binary variable representing the presence or absence of
an emission at this step. The three lower registers count
the number of particles of type φ, a, and b and are un-
computed before the end of the circuit. The exact form
of the rotation matrices R(m) and the unitary operations
Ucount, U (m)

e , Uh, and U (m)
p can be found in Ref. [15].

3.2 Experimental setup

The QPS simulation is implemented into a quan-
tum circuit using IBM Qiskit version 0.22.0 [48]
with Terra 0.15.2, Aer 0.6.1 and Ignis 0.4.0 APIs
in Python 3.8 [68]. First, we attempt to optimize
the circuits running on a classical computer with
a single 2.4 GHz Intel core i5 processor.

In order to evaluate the Aqcel performance,
the same QPS circuit optimized using t|ket〉 [42]
in pytket 0.6.1 before transpilation is used as a
reference. The optimization using t|ket〉 is done
as follows. We consider the list of ten pre-defined
passes described in [69]. The passes are tried one
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Figure 5: Quantum circuit for the QPS simulation with two branching steps. The two RSGs, identified by the gate
set pattern recognition step in the optimization scheme, are indicated by the ovals with different background colors.

by one on the QPS circuit, and the one that re-
duces the number of gates the most is applied to
the circuit. The same set of passes are tried again
on the resulting circuit to identify and apply the
pass that most effectively reduces the gate count.
This iterative process is repeated until the gate
count is no longer reduced by any of the passes.
The selected sequence of passes are used for eval-
uating the t|ket〉 performance in the remainder of
the studies.

The QPS algorithm is executed on the 27-qubit
“ibmq_sydney” [70], one of the IBM Quantum
Falcon Processors, and the statevector simulator
in Qiskit Aer with and without optimizing the
circuit. For the results obtained solely from the
statevector simulator, all the qubits are assumed
to be connected to each other (referred to as the
ideal topology). When executing the algorithm
on the sydney, the gates in the circuit are trans-
formed into machine-native single- and two-qubit
gates, and the qubits are mapped to the hard-
ware accounting for the actual qubit connectivity.
For all the circuits tested with the sydney below,
the noise-adaptive mapping is performed by tak-
ing into account the read-out and CNOT gate er-
rors from the calibration data as well as the qubit

connection constraints1. Gate cancellations also
take place at this stage using the commutativity
of native gates and unitary synthesis, as docu-
mented in Qiskit Terra API. This qubit mapping
and gate cancellation process are repeated eleven
times, and the circuit obtained with the smallest
number of gates is finally tested with the sydney.

3.3 Results

3.3.1 Circuit optimization for Nevol = 2 branching
steps using classical simulation

Circuit optimization performance of Aqcel is
evaluated for a quantum circuit of the QPS sim-
ulation with Nevol = 2 branching steps assuming
an ideal topology. The simulation does not con-
sider any effects from hardware noise. The initial
state is chosen to be |f1〉, and the coupling con-
stants are set to g1 = 2 and g2 = g12 = 1. Both
f → f ′φ and φ → ff̄ processes are considered2.
The original circuit constructed using Qiskit is
shown in Fig. 5.

1This corresponds to the transpilation of level 3 pass
manager, as implemented in Qiskit Terra.

2Ref. [15] noted that when these are unphysically re-
moved, the circuit can be simulated efficiently classically
(see also Ref. [14]).
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First, the RSG pattern recognition is per-
formed against the circuit. When the Level 2
RSG pattern recognition is applied, two RSGs
are identified, as also shown in Fig. 5, with the
requirements on the number of nodes in each RSG
being between 5 and 7 and the number of repe-
titions being 4 or more. If the matching level is
raised from Level 2 to 3, candidate patterns with
smaller numbers of nodes or repetitions are gen-
erally found.

Next, the heuristic optimization (Sec. 2.2) is
performed over the entire circuit at Level 1. This
step consists of identifying nonzero-amplitude
computational basis states, removing redundant
controlled operations, removing adjacent can-
celling gate pairs (performed twice), and remov-
ing unused qubits. Nonzero-amplitude computa-
tional basis states are identified through classical
calculation.

After the algorithmic level circuit optimization,
the quantum gates in the circuit are decomposed
into single-qubit gates (U1, U2, U3) and CNOT
gates. Figure 6 shows the numbers of the single-
qubit and CNOT gates, the sum of the two, and
the depth of the circuit before and after the op-
timization. The circuit depth is defined as the
length of the longest path from the input to the
measurement gates, with each gate counted as a
unit, as implemented in Qiskit. The figure com-
pares the values from the original circuit, the cir-
cuit optimized with t|ket〉 only, that with Aqcel
only, and that with the combination of the two.
The Aqcel optimizer reduces the total number of
gates by 54%, resulting in a 51% reduction of the
circuit depth. In particular, the reduction of the
number of CNOT gates is 47%. This compares
to t|ket〉, which reduces the total number of gates
by 26%, CNOT by 1%, and the circuit depth by
10%. This means that, for the QPS algorithm,
Aqcel is 38% more efficient than t|ket〉 in reduc-
ing the gate counts, and 46% more specifically
for CNOT, and makes the circuit 45% shorter.
Combining the two optimizers, the gate count is
reduced by 63% (50% for CNOT only) and the
depth by 55% with respect to the original cir-
cuit. The combined optimizer is 51% more ef-
ficient than the t|ket〉 alone for gate reduction
(49% for CNOT only), producing a 50% shorter
circuit for the QPS algorithm.

For the Aqcel optimizer, the gate reduction
occurs mostly at the stage where the redundant
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Figure 6: Numbers of single-qubit (U1,2,3) gates, CNOT
gates and the sum of the two as well as the depth of the
two-branching step QPS circuit decomposed into native
gates before and after optimization. The computational
basis states with nonzero amplitudes at controlled gates
are identified using classical calculation in the heuristic
optimization step of Aqcel.

qubit controls are removed. Starting with 1279
gates (excluding barrier and measurement gates),
the first adjacent gate-pair elimination step, the
redundant qubit control reduction step, and the
second gate-pair elimination step each removes
170, 510 (40% of the 1279 gates), and 6 gates,
respectively. In terms of the computational cost,
the wall time is by far dominated by the two ad-
jacent gate-pair elimination steps combined, ac-
counting for 91% of the total time, with a sub-
dominant contribution of 7% from the redundant
qubit control reduction.

Finally, the number of qubits is reduced from
24 to 21 with the Aqcel optimizer, while it is
unchanged by t|ket〉. One qubit is removed from
each of the three registers na, nb, and nφ because
those qubits are used only forNevol ≥ 3 branching
steps.

3.3.2 Circuit optimization for Nevol = 1 branching
step using classical simulation and quantum mea-
surements

The quantum circuit for the two-branching step
QPS simulation is still too deep to produce use-
ful results on a real existing quantum computer,
even after optimizing the circuit. Therefore, we
consider the circuit with only one branching step
using the sydney and the statevector simulator.
The initial state, coupling constants, and consid-
ered processes are the same as those used for the
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Nevol = 2 branching steps simulation.
First, we examine the gate and qubit counts for

the one-branching step QPS simulation assum-
ing an ideal topology. Starting with 486 gates,
the Aqcel optimizer removes 24, 260 (53% of
486 gates), and 2 gates in the three steps of the
heuristic optimization, in the order given above.
The adjacent gate-pair elimination step still dom-
inates the wall time (96%). However, the redun-
dant qubit control reduction now takes about 9
times less time than that for the two-branching
step simulation, which is consistent with the ex-
ponential behavior of the computing cost of the
step, as discussed in Sec. 2. The number of qubits
is reduced from 15 to 13 with the Aqcel opti-
mizer. One of four ancilla qubits is removed be-
cause three ancillas are sufficient for decomposing
all the multi-controlled gates in the Nevol = 1
step. The register nφ, composed of only one
qubit, is also removed because it is used only for
the case where the initial state is |φ〉.

Next, the optimized circuits are transpiled
considering the qubit connectivity of the
ibmq_sydney. Figure 7 shows the same set
of distributions as in Fig. 6, but for the one-
branching step QPS simulation with the sydney-
specific transpilation. The Aqcel optimizer re-
duces the number of native gates significantly for
the one branching step as well. The relative re-
duction is more drastic for the one branching step
than the two branching steps, mainly because the
former (shallow) circuit has relatively more zero-
amplitude computational basis states than the
latter (deep) circuit.

We then evaluate the performance of the opti-
mizers using the sydney. A particular challenge
when employing Aqcel with a real quantum
computer is in the determination of the bitstring
probabilities of the control qubits at each con-
trolled gate using quantum measurements. Due
to hardware noise, the list of observed bitstrings
would contain contributions from errors on the
preceding gates and the measurement itself.

To mitigate the measurement errors, we obtain
the correction by measuring the calibration ma-
trix for the control qubits (with 8192 shots per
measurement) using Qiskit Ignis API. The correc-
tion is then applied to the observed distribution
with a least-squares fitting approach.

The errors incurred by gate imperfection accu-
mulate throughout the circuit execution and are
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Figure 7: Numbers of single-qubit (U1,2,3) gates, CNOT
gates and the sum of the two as well as the depth of the
one-branching step QPS circuit transpiled considering
the ibmq_sydney topology before and after the opti-
mizations. The computational basis states with nonzero
amplitudes at controlled gates are identified using classi-
cal calculation in the heuristic optimization step of Aq-
cel.

difficult to correct. Instead, in Aqcel, we opt
to ignore the observed bitstrings with occurrence
below certain thresholds (cutoff thresholds), un-
der the assumption that the gate errors act as a
perturbation that inserts spurious computational
basis states with small amplitudes into the su-
perposition of the system. This can be improved
in the future with additional computational com-
plexity by using gate error mitigation such as the
zero noise extrapolation mentioned in Sec. 1.

The cutoff thresholds are defined as follows.
We consider the errors in single-qubit (U1,2,3) and
two-qubit (CNOT) gates separately for all the
hardware qubits. The reported error rates at the
time of the experiment, measured during the pre-
ceding calibration run of the hardware, are used
for the calculations. Let the U1,2,3 and CNOT
error rates be ε(i)U and ε

(i,j)
CX , respectively, with i

and j indicating qubits that the gates act on. We
can approximately calculate the probability pε of
measuring the states with at least one gate er-
ror occurring anywhere in the circuit by perform-
ing qubit-wise (index-dependent) multiplications
of the error rates:

pε = 1−

∏
i

(
1− ε(i)U

)n(i)
U
∏
i 6=j

(
1− ε(i,j)CX

)n(i,j)
CX


∼ NCXεCX , (3)

where n(i)
U and n(i,j)

CX are the number of U1,2,3 and
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Figure 8: Numbers of single-qubit (U1,2,3) gates, CNOT
gates and the sum of the two as well as the depth of the
one-branching step QPS circuit transpiled considering
the ibmq_sydney topology before and after optimiza-
tion. The probabilities of observing various bitstrings in
the control qubits are measured using the sydney in the
heuristic optimization step, and the three dynamic cutoff
thresholds of slow

ε , smed
ε and shigh

ε are applied.

CNOT gates acting on the corresponding qubits,
respectively, and in the last line we have assumed
that all CNOT errors are equal, much larger than
single gate errors and much smaller than one
ε
(i)
U � ε

(i,j)
CX = εCX � 1. The first cutoff thresh-

old is
shigh
ε := pε, (4)

corresponding to making an extreme assumption
that any occurrence of a gate error during cir-
cuit execution results in a specific bitstring being
observed at the measurement, and attempting to
discard that bitstring. The second threshold,

slowε := pε/2m, (5)

where m is the number of the measured control
qubits, is related to another extreme assumption
that the gate errors result in a uniform distribu-
tion of all possible bitstrings. The third and final
threshold is the average of the above two:

smed
ε := (slowε + shigh

ε )/2. (6)

It should be noted that pε increases as the cir-
cuit execution proceeds, as it is obtained by mul-
tiplying the error rates of all the preceding gates
in the circuit. As an alternative strategy, we also
examine static thresholds sfε that are kept con-
stant throughout the circuit, with values between
5% and 40%. We also consider capping the dy-
namic thresholds slowε , smed

ε , and shigh
ε at 25% (the

reason behind the 25% will be given later).
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Figure 9: Numbers of single-qubit (U1,2,3) gates, CNOT
gates and the sum of the two as well as the depth of the
one-branching step QPS circuit transpiled considering
the ibmq_sydney topology before and after optimiza-
tion. The probabilities of observing various bitstrings in
the control qubits are measured using the sydney in the
heuristic optimization step, and the static cutoff thresh-
olds of sfε are applied.

Discarding all bitstrings with occurrence under
certain thresholds obviously introduces errors of
its own. For example, we observe that discarding
bitstrings using unbounded shigh

ε as the threshold
for the one-branching step QPS simulation circuit
results in an elimination of most of the controlled
gates in the later part of the circuit, rendering the
circuit practically meaningless. Therefore, the ac-
tual threshold to be used with Aqcel should be
chosen considering the tradeoff between the effi-
ciency of the circuit optimization and the accu-
racy of the optimized circuit3.

Figure 8 shows the gate counts obtained from
Aqcel optimizations using actual measurements
on the sydney under dynamic cutoff thresholds.
The gate counts decrease as the threshold is
raised from slowε to shigh

ε , as expected. Figure 9
shows the same distributions obtained with static
thresholds. Almost no gate survives under the
threshold of 40%, which likely implies a signifi-
cant loss of accuracy of the computation result.

The number of qubits is reduced from 15 to
13 with the threshold of slowε or smed

ε , and to 11
with shigh

ε . Under static thresholds, the number
of qubits is reduced from 15 to 13 for 5% ≤ sfε ≤
25%, but a significant reduction to 8 is seen for

3In the actual implementation, the threshold corre-
sponding to 5% of the number of shots is applied to all
the three cases to suppress contributions from imperfect
measurement error mitigation.
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Figure 10: Fidelity Fmeas versus the number of native
gates for the one-branching step QPS circuit transpiled
considering the ibmq_sydney topology before and af-
ter optimization. The computational basis states with
nonzero amplitudes at controlled gates are identified
using classical calculation in the heuristic optimization
step. These transpiled circuits are executed on the syd-
ney to obtain the Fmeas.

sfε ≥ 35%.
To evaluate the accuracy of the optimized cir-

cuit, we consider a classical fidelity of the final
state of the circuit, which is defined in terms of
the probability distribution of the computational
basis states observed in the measurement at the
end of the circuit. This quantity, denoted as F
and referred to as just “fidelity” hereafter, is given
by

F =
∑
k

√
porig
k popt

k , (7)

where the index k runs over the computational
basis states. The quantities porig

k and popt
k are the

probabilities of observing k in the original and
optimized circuits, respectively.

In fact, we compute two fidelity values for each
optimization method. The first, denoted Fsim,
aims to quantify the amount of modifications to
the original circuit affected by the optimization
at the algorithmic level. To calculate Fsim, both
porig and popt are computed using the state vector
simulation. The value of Fsim = 1 indicates that
the optimized circuit is identical to the original
circuit (up to a possible phase difference on each
of the qubits), while a value different from unity
gives a measure of how much the optimization
has modified the circuit.

The second fidelity value, Fmeas, is computed
using measurements from actual quantum com-
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Figure 11: Fidelity Fmeas versus the number of native
gates for the one-branching step QPS circuit transpiled
considering the ibmq_sydney topology before and af-
ter optimization. The probabilities of observing various
bitstrings in the control qubits are measured using the
sydney in the heuristic optimization step, and the static
thresholds of sfε are applied. These transpiled circuits
are executed on the sydney to obtain the Fmeas.

puter for popt. The rate of occurrence of a bit-
string in a large number of repeated measure-
ments is used as an estimate of popt. The porig is
computed using simulation as for the Fsim. Even
if the optimized circuit is identical to the original
circuit, the presence of noise will mean Fmeas < 1,
with the discrepancy getting larger when more
gates (in particular CNOT gates) are present in
the circuit. Removing CNOT gates to obtain the
optimized circuit will lower the overall effect of
noise, which raises the value of Fmeas. However,
in some cases the CNOT gate removal also af-
fects low-amplitude computational basis states,
meaning the optimized circuit can differ from the
original circuit, that might result in a suppres-
sion of the Fmeas value. Thus, Fmeas is a measure
that takes into account the tradeoff of making the
circuit shorter and changing the circuit through
optimization.

Figure 10 shows the fidelity Fmeas versus the
number of native gates (U1,2,3, CNOT) before
and after optimization, where the optimization
is performed using the classical simulation. One
can see that shortening the circuit is increasing
the Fmeas as expected. The measurements are
performed 81920 times for each of the circuit to
obtain the Fmeas values, and measurement error
mitigation is not used in these or following Fmeas
measurements.
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Figure 12: Fidelity Fmeas versus the number of native
gates for the one-branching step QPS circuit transpiled
considering the ibmq_sydney topology before and af-
ter optimization. The probabilities of observing various
bitstrings in the control qubits are measured using the
sydney in the heuristic optimization step, and the three
dynamic thresholds of slow

ε , smed
ε and shigh

ε are applied.
These transpiled circuits are executed on the sydney to
obtain the Fmeas.

When the elimination of redundant qubit con-
trols is performed based on measurements using
quantum computer and with static thresholds,
the Fmeas versus gate counts become those shown
in Fig. 11 for various values of the sfε thresh-
olds. We observe that with increasing sfε value
the Fmeas first increases, which indicates more ag-
gressive optimization, but that at some point the
Fmeas starts to worsen, signaling that the opti-
mized circuit becomes too far from the original
circuit. For the circuit considered here, the per-
formance of the optimization seems best for sfε
∼ 25%.

In Fig. 12 we show the result of the optimiza-
tion with the dynamic thresholds of shigh

ε , smed
ε ,

and slowε . We also show results for the capped
variants, where the threshold is capped at 25%.
The Fmeas generally improves with higher thresh-
olds, but is worse with shigh

ε than with smed
ε be-

cause the accuracy is significantly degraded due
to too aggressive threshold in the former case.
The capped variants leave more gates in the cir-
cuit and have lower Fmeas than the unbounded
cases, except for when using shigh

ε , where capping
of the threshold seems to mitigate the loss of ac-
curacy from overly aggressive optimization.

The results obtained from different approaches
for finding nonzero-amplitude basis states and
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Figure 13: Numbers of single-qubit (U1,2,3) gates,
CNOT gates and the sum of the two as well as the
depth of the one-branching step QPS circuit transpiled
considering the ibmq_sydney topology before and after
optimization under different schemes.

different choices of cutoff thresholds are summa-
rized in Figs. 13 and 14 for comparison. It is
worth noting that most of the Aqcel-based op-
timization shown in the figure improve the Fmeas
value over the t|ket〉-only optimization. Another
interesting finding is that the determination of
bitstring probabilities with quantum measure-
ments brings a better performance than the iden-
tification of nonzero amplitudes with classical cal-
culation, if the cutoff threshold is set properly
(25% for this case). A qualitative explanation
for this would be that the quantum measure-
ments and the cutoff serve to remove qubit con-
trols over low-amplitude basis states, where such
states contribute little to the final calculation re-
sult but the existence of the controlled gates pro-
duces those spurious states under the effect of
hardware noise. An exact identification of com-
putational basis states with nonzero amplitudes
with classical simulation does not allow remov-
ing such qubit controls, effectively degrading the
Fmeas.

Figure 15 shows the fidelities Fsim versus Fmeas
before and after optimization under different
schemes. The figure shows that the Fsim is iden-
tical to unity for all circuits optimized using the
classical simulation, validating that the optimiza-
tion has not affected the computational accuracy
with respect to the original circuit. Although it
also shows that the Fsim is slightly lowered from
unity for all circuits optimized using actual mea-
surements on the ibmq_sydney, the Fmeas is bet-
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Figure 14: Fidelity Fmeas versus the number of native
gates for the one-branching step QPS circuit transpiled
considering the ibmq_sydney topology before and after
optimization under different schemes. These transpiled
circuits are executed on the sydney to obtain the Fmeas.

ter than the original circuit because gate reduc-
tions suppress the effect of hardware noise.

4 Discussion

4.1 Applicability of proposed heuristic opti-
mization

The core component of the proposed heuristic
circuit optimization is the identification of com-
putational basis states with nonzero amplitudes
and the subsequent elimination of redundant con-
trolled operations. Therefore, Aqcel is expected
to work more efficiently for quantum algorithms
in which the quantum state has a small number
of high-amplitude computational basis states. In
other words, if all the computational basis states
have non-negligible amplitudes, Aqcel would
not be effective. An example of when Aqcel
is not effective is a quantum algorithm where an
equal superposition state is first created by apply-
ing H⊗n to the initial |0〉⊗n state of the n-qubit
system, such as Quantum Phase Estimation [71]
and Grover’s Algorithm.

4.2 Possibility of further simplifications

For certain quantum circuits, there is a case
where there are successive multi-qubit controlled
gates that share the same control qubits. One
example is in the QPS simulation circuit (Fig. 4).
The circuit determines if an emission happens
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Figure 15: Fidelities Fmeas versus Fsim for the one-
branching step QPS circuit transpiled considering the
ibmq_sydney topology before and after optimization un-
der different schemes. These transpiled circuits are exe-
cuted on the sydney to obtain the Fmeas and a statevec-
tor simulator to obtain the Fsim. The vertical bars rep-
resent the total number of gates in the circuits (gauged
by the right-hand vertical axis).

and which particle radiates or splits, depending
on the total counts of particles of each type.
These steps (corresponding to the blocks with
controlled unitary operations denoted by U

(m)
e

and Uh in Fig. 4) require a lot of successive multi-
ple controlled operations that share the same con-
trol qubits. In this case, if the circuit is expanded
by adding an ancilla qubit and the triggering de-
cision of the control qubits is stored into the an-
cilla qubit, the remaining multi-qubit controlled
gates can be controlled by the ancilla. A poten-
tial caveat is that adding ancilla qubits might in-
troduce additional SWAP gates when implement-
ing the circuit to hardware. However, since this
approach does not depend on the amplitudes of
computational basis states of a given circuit state,
it is complementary to the Aqcel optimization
scheme and will open the possibility of reducing
the overall gate counts further.

Another interesting possibility is that if a cir-
cuit turns out to contain only a small number of
basis states, the circuit state can be represented
using fewer qubits than the original ones. Given
that this might require a completely new compu-
tational basis, this is left for future work.
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4.3 Implication to hardware implementations
of quantum circuits

The techniques introduced in the Aqcel pro-
tocol, i.e., identification of most-frequently-
appearing sets of quantum gates as RSGs and the
removal of redundant qubit control operations,
have implications to hardware implementation of
quantum circuits.

First, the RSGs would be a prioritized target
for better mapping to quantum hardware. For
the QPS algorithm, the RSGs contain multi-qubit
controlled gates like the Toffoli gate, as shown in
Fig. 5. In this case, these RSGs are further de-
composed into collections of native single- and
two-qubit gates. Therefore, the depth of the
transpiled circuit depends significantly on which
hardware qubits the decomposed RSG gates are
mapped on to. If the tranpilation algorithm ac-
counts for the frequency of the occurrence of the
RSGs, an improved qubit mapping can be created
such that frequently-used controlled gates are ap-
plied on neighboring qubits with better connec-
tivities on the quantum hardware.

In comparison between the Aqcel and t|ket〉
optimizers (e.g., Figs. 6 and 7), the t|ket〉 perfor-
mance on the gate reduction turns out to be sub-
optimal for the QPS algorithm. This is largely
due to the lack of ability in t|ket〉 to remove re-
dundant controlled operations through the identi-
fication of nonzero-amplitude computational ba-
sis states. However, in certain cases, the t|ket〉-
optimized circuit ends up with even more gates
than the original circuit, as seen in Fig. 7 (note
that the original and t|ket〉-optimized circuits
are both optimized using the noise-adaptive map-
ping and gate cancellation, see Sec. 3.2). The
t|ket〉 optimizes a circuit assuming that all the
qubits are connected to each other. This indicates
that the circuit optimized with this assumption
could result in more SWAP gates once the hard-
ware connectivity is taken into account. On the
other hand, when the t|ket〉 optimization is per-
formed on a circuit already transpiled to specific
hardware configuration, the gate counts appear
to further reduce4. Even in this case, the Aq-
cel optimization performed before transpilation
still produces a shorter circuit than the t|ket〉.

4This transpilation is performed with tools in Qiskit
Terra. The t|ket〉 also allows its own circuit compilation
to specific hardware, but it is not examined in this study.

This clearly indicates the importance of how well
the gate errors are controlled and unnecessary
gate operations are removed as much as possi-
ble. Moreover, if a circuit is mainly composed of
Level 3 RSGs, as in the case of the QPS circuit
used here, the hardware quality of control qubits
of the RSGs will become crucial for the circuit
simplification procedure proposed in the Aqcel
protocol.

5 Conclusion and outlook

We have proposed a new protocol, called Aq-
cel, for analyzing quantum circuits to identify
recurring sets of gates and remove redundant
controlled operations. The heart of the redun-
dant controlled operations removal resides in the
identification of zero- or low-amplitude computa-
tional basis states. In particular, this procedure
can be performed through measurements using a
quantum computer in polynomial time, instead
of classical calculation that scales exponentially
with the number of qubits. Although removing
qubit controls triggered in low-amplitude states
will produce a circuit that is functionally distinct
from the original, it is observed that this may be
a desirable feature in some cases under the ex-
istence of hardware noise. If a quantum circuit
contains recurring sets of quantum gates, those
gates will be considered as candidates for further
optimization in terms of both gate synthesis and
hardware implementation. In the proposed pro-
tocol, the underlying technique to identify recur-
ring gate sets is demonstrated, leading to the pos-
sibility of hardware-aware optimization of such
gates including dedicated microwave pulse con-
trols.

We have explored the Aqcel optimization
scheme using the quantum parton shower sim-
ulation, a prototypical quantum algorithm for
high-energy physics. For this algorithm, the pro-
posed scheme shows a significant reduction in
gate counts with respect to t|ket〉, which is one of
the industry-standard optimization tools, while
retaining the accuracy of the probability distri-
butions of the final state.

This feature opens the possibilities to extend
this optimization scheme further in future. We
have considered several scenarios of the thresh-
olds applied to the measured computational basis
states to take into account the gate errors. The
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measurement error is accounted for using the cal-
ibration matrix approach, and this can be im-
proved by adapting the unfolding technique de-
veloped in Ref. [16] and related approaches that
use fewer resources [22–24, 33, 72] or further mit-
igate the errors [35]. A substantial contribution
to the gate errors originates from CNOT gates.
There are a variety of approaches to mitigate
these errors, including the zero noise extrapola-
tion mentioned in Sec. 1. With such errors miti-
gated, we could potentially lower the thresholds.
The threshold choice has a large impact to the ac-
curacy of the measured probability distributions,
as in Fig. 14, therefore the precise control of the
measurement and gate errors is crucial for this
approach.
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A Algorithms of graph pattern recog-
nition
The pattern recognition algorithm of recurring
set of quantum gates (RSG) is described in Algo-
rithm 2. This algorithm is based on depth-first
search with heuristic pruning.

First, RSG candidates are built from seeding a
quantum gate (node) by seeking possible combi-
nations of RGSs that have descending connected
quantum gates. A target node used as a seed,
i.e., the beginning node, is selected with pos-
torder traversal with a memorization technique to
avoid a repeating calculation. The computational
complexity of the algorithm is O(Nnodes!)5. Due

5The i-th node has Nnodes − i RSG candidates in the
worst case. Therefore, the computational complexity of
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Figure 16: An example of quantum circuit (left) and
its subgraph (G′ = {A,B,C}) removed in our pat-
tern recognition algorithm (right). A functionality of
the corresponding circuit depends on the intermediate
gate (D)).

to a large number of combinations of recurring
gates, the complexity is worse than the typical
complexity of a classical computer, O(nqubits!) or
O(2nqubits), because of Nnodes = ngates ≥ nqubits
in most cases, and therefore it loses the bene-
fit of quantum computer. To reduce the com-
putational complexity, we prune the RSG can-
didates by requiring the length of the longest
path, the minimum number and the maximum
number of elements in RSG. The requirement of
the minimum number of elements rejects a triv-
ial RSG (e.g. G = {X}). The computational
complexity reduces to O(NNthr

nodes)6 where Nthr is
a threshold value for the pruning, and the clas-
sical computer can calculate this in polynomial
time when Nthr is fixed. However, this algorithm
sometimes causes ill-defined RSGs, as shown in
Fig. 16. The functionality of the quantum cir-
cuit from such an RSG depends on the interme-
diate gate that is not used in the RSG. These
RSGs are rejected in this algorithm by requir-
ing that there is no node, which is both a child
and a parent nodes but not an element of the
RSG (∃gi, gj ⊆ G

′
, {gk|gi → gk, gk → gj} * G

′).
After building the RSG candidates, they are

grouped by graph isomorphism using the Weis-
feiler Lehman graph hash. The use of graph hash
does not ensure that two graphs are isomorphic,
but the accuracy is sufficient for our use case. For
the Level-1 matching criteria which consider only
gate types, we assign the gate type as a node fea-
ture and assign nothing for an edge feature. For
the Level-2 matching criteria which consider both
gate types and qubit roles, we assign the gate type
as a node feature and assign the target or control

the combination of the number of child-node’s RSG can-
didates is O(Nnodes!).

6We take Nthr RSG candidates from Nnodes nodes.
Therefore, the computational complexity is

(
Nnodes

Nthr

)
≈

NNthr
nodes.
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label as an edge feature. For the Level-3 match-
ing criteria which consider gate types, qubit roles
and indices, we assign the gate type as a node
feature and assign the absolute qubit index as an
edge feature.

Finally, the top-k RSGs are selected based on
the frequency times the graph size.

Algorithm 2: Gate set pattern recognition with
DAG

for all quantum gate (node) (gi) in the cir-
cuit (G) do

for all subset (G′) beginning with the target
node (gi) do

if the longest path is longer than the
threshold then
continue

end if
if number of elements in subset is out of
thresholds then
continue

end if
if ∃gi, gj ⊆ G

′
, {gk|gi → gk, gk → gj} * G

′

then
continue

end if
G
′ is a RSG candidate.

end for
end for
Make a set of RSGs (S(h) = {G′ |hash(G′) =
h})
Select top-k sets of RSGs (S(h)) ordering by
the frequency |S(h)| times RSG size (|G′ |)

B Computational resources for the
proposed optimization scheme
The computational cost needed to perform the
proposed optimization scheme is evaluated here.
We consider a quantum circuit that contains n
qubits and N multi-qubit controlled gates, each
acting on m control qubits and one target qubit.

The elimination of adjacent gate pairs pro-
ceeds, for each gate, by checking a pair-wise
matching to the next gate until the end of the
gate sequence. Since the gate could contain at
most n qubits, the computational cost would be
O(nN).

The next step in the optimization scheme is the
identification of computational basis states. If we

use the classical calculation for simply tracking
all the computational basis states whose ampli-
tudes may be nonzero at each point of the cir-
cuit without the calculation of the amplitudes,
it requires the computation of O(N2n) states, so
grows exponentially with n. This method allows
the lower computational resource than a stat-
evector simulation though it neglects rare elim-
inations of redundant controlled operations. If
we measure the control qubits at each controlled
gate M times using a quantum computer, the to-
tal number of gate operations and measurements
is given by M{m + (1 + m) + (2 + m) + · · · +
(N − 1 +m)} = 1

2MN(N − 1) +mMN . There-
fore, the computational cost grows polynomially
in O(MN2 +mMN).

We next consider removing redundant qubit
controls from a controlled gate with m control
qubits. Using a quantum computer that mea-
sures the m control qubits M times, the mea-
sured number of computational basis states is M
if M < 2m, otherwise 2m. For the classical calcu-
lation, the number of basis states is 2m. Imagine
that we choose an arbitrary combination among
2m possible combinations of new qubit controls
on the same controlled gate. If we want to know
whether the chosen combination can act as the
correct qubit control, we would need to check,
for a given measurement done previously with
quantum computer, if all the possible “unmea-
sured” computational basis states satisfy the cho-
sen one or not. This requires O(m2m). Since this
has to be checked for all the measurements, the
cost would be O(Mm2m) if M < 2m, otherwise
O(m4m). Therefore, the overall computation for
the determination of redundant qubit controls
would become O(Mm4mN) or O(m8mN) for N
multi-qubit controlled gates, each having 2m com-
putational basis states. The classical calculation
would require O(m8mN) as well.

It is known than an arbitrary multi-qubit
controlled-U gate with m control qubits can be
decomposed into O(m) Toffoli and two-qubit
controlled-U gates [64]. Therefore, if a con-
trolled gate in the circuit is decomposed in this
way, then above computational cost for the re-
dundant qubit controls would become O(mN).
With this decomposition, the total number of
gate operations and measurement increases due
to O(m) times more controlled gates. How-
ever, the computational cost for the identifica-
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tion of computational basis states becomes only
1
2mMN(mN−1)+2mMN , so still behaves poly-
nomially in O(m2MN2) in case the quantum
computer is used. For the classical calculation,
the cost becomes O(mN2n).

The final step of the optimization scheme is
the elimination of unused qubits. This is just
performed by checking qubits that all the gates
in the circuit act on, therefore the computational
cost is O(nN).

Given that a controlled gate has at most n− 1
control qubits, the total computational cost for
the entire optimization steps is O(n2MN2) and
O(nN2n) if the computational basis state mea-
surement is performed using a quantum computer
and classical calculation, respectively.

C General conditions to eliminate
qubit controls
Given a multi-qubit controlled gate Cm[U ] and a
system in the “undetermined” state |ψ〉 following
the classification in Section 2.2.1, we can derive
the condition for removal of a part of the controls
to be allowed in the following way.

Let x be the number of controls to be removed.
Without loss of generality, the decomposition of
|ψ〉 can be rewritten as

|ψ〉 =
∑
i,l,k

c̃i,l,k |i〉ctl′ ⊗ |l〉free ⊗ |k〉 , (8)

where |·〉ctl′ and |·〉free are the states of the m−x
remaining control qubits and the x qubits from
which the controls are removed. From Eq. (1),

|i〉ctl′ ⊗ |l〉free = |2xi+ l〉ctl , (9)

and therefore

c̃i,l,k = c2xi+l,k. (10)

Applying the original controlled gate to |ψ〉
yields

Cm[U ] |ψ〉 =
2m−2∑
j=0

∑
k

cj,k |j〉 |k〉+∑
k

c2m−1,k |2m − 1〉U |k〉 , (11)

where ket subscripts and the tensor product sym-
bols are omitted for simplicity. In contrast, the

new gate with fewer controls give

Cm−x[U ] |ψ〉 =
2m−x−2∑
i=0

∑
l,k

c̃i,l,k |i〉 |l〉 |k〉+∑
l,k

c̃2m−x−1,l,k |2m−x − 1〉 |l〉U |k〉 . (12)

For the removal of x qubit controls to be al-
lowed, the right hand sides of Eqs. (11) and (12)
must be identical. This requires

2x−2∑
l=0

∑
k

c̃2m−x−1,l,k |2m−x − 1〉 |l〉U |k〉 =

2x−2∑
l=0

∑
k

c2m−2x+l,k |2m − 2x + l〉 |k〉 . (13)

Denoting
U |k〉 =

∑
k′

ukk′ |k′〉 (14)

and recalling Eqs. (9), Eq. (13) implies (replacing
k′ ↔ k on the left hand sides)

2x−2∑
l=0

∑
k,k′

c̃2m−x−1,l,k′uk′k |2m−x − 1〉 |l〉 |k〉 =

2x−2∑
l=0

∑
k

c2m−2x+l,k |2m−x − 1〉 |l〉 |k〉 . (15)

Then, with Eq. (10), we have∑
k′

c̃2m−x−1,l,k′uk′k = c̃2m−x−1,l,k ∀l, k. (16)

Equation (16) holds if the row vector
{c̃2m−x−1,l,k}k is an eigenvector of the matrix u
with eigenvalue 1 under right multiplication for
all l, or if c̃2m−x−1,l,k = 0 for all l and k.

Since the cost of exactly computing the com-
plex amplitudes of the quantum state is high, in
Aqcel we only consider this second condition of
c̃2m−x−1,l,k = 0. When using quantum measure-
ments to estimate the bitstring probabilities at
the control qubits, this requirement translates to
observing no bitstring with 1 in the qubits that
are considered for control removal.
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